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This paper presents a model to calculate the temperature de-
pendence of effective permit tivit ies for a 1 eterogencous anisotropic
medium containing multiphase scatterers. With the strong permit-
tivity fluctuation approach, the model is developed to account for
the clectrodynamic scattering effect together with the quasi-static
characteristics of multiple species and subspecies of inhomogeneities
with distributed orientations, sizes, and shapes. Duc to a preferen-

tial direction in the orientation distribution, the medium is effectively




anisotropic. The size distribution is described with a probability den-
sity function in terms of normalized volumetric sizes. Scatterer shapes
arc nonuniform and have a genera] ellipsoidal form characterized by
arbitrary axial ratios of correlation lengths which arc related to physi-
cal geometries of the scatterers. In this formulation, scaice consisting
of solid ice, liquid brine, and gaseous inclusions is modcled to derive
anisotropic ceffective permittivities with thermodynamic phase redis-
tribution and structural metamorphism. Theoretical results arc in
good agreement with experimental data at 4.8 GHz for saline ice un-
dergoing warming and cooling cycles. A competitive effect between
the increase of liquid brine and the rounding of ellipsoidal scatterers
at increasing temperatures explains the trend observed in measured
data. Sensitivities of cffective permittivities to structural and physical

parameters characterizing sca ice arc also studied.

1. INTRODUCTION

Most natural media arc heterogeneous mixtures of materials with different phases,
orientations, sizes, and shapes. Physical and struct ural characteristics of medium con-
st it uents are usual] y interdependent and influenced by environiment al conditions such as
ambient temperature, solar radiation, moisture and precipitation. The composite media
can be characterized by effective perrnittivities, w]iichdetermine elect romagnet ic wave

propagation, at tenuation, scattering, and emission. Thesc processes are essential to the




interpretation of remote sensing data of geophysical media. Effective permittivities them-
sclves, however, also often demonstrates complex environmental dejp)endencies such as ther-
mal variations. This paper presents a permittivity inodel to explain these effects and
illustrate the results with an application to sea ice.

Permittivities of mixtures have long been a subject of extensive study. Many di-
electric mixing formulas have been derived for multiphase inhomogeneities with spherical,
spheroidal, and cllipsoidal shapes. Together with a summary of these formulas, Tinga et al.
[1975'] reported a formula for confocal ellipsoidal shell inclusions and compared calculated
results with measured data for wet wood. In modeling of heterogeneous earth, Wait [1983]
indicated that the particle shape is important to the effective electrical properties. A more
complete account of electrical properties of the earth has been documented [ Watt, 1989],
including a model of coated particles for disseminated sulphide mineralization. With ap-
plications to snow and sea ice, Sihvola and Kong [1988] obtained a general mixing formula
under the quasi-static condition for multiphase mixtures of scattering ellipsoids.

In addition to the quasi-static term, a scattering term appears in the effective per-
mittivity expression derived from the strong permittivity fluctuation theory [ T'sang and
Kong, 1981a]. In this approach, the quasi-static absorption loss and the dispersive scat-
tering loss are both considered. The theory was applied to vegetation [ T'sang and Kong,
1981 b], snow [Tsang et al., 1982], and sea ice[Stogryn, 1987]. This approach has been
extended to model a random medium containing uniform ellipsoids with orientation distri-
butions [Nghiem et al., 1998] and an isotropic heterogeneous medium containing multiple
species of uniform-size scatterers [Nghiem et al., 1995b).

In this paper, a model is developed to account for the complexity of multiphase




mixtures with multiple species and subspecies of scat terers characterized by orientation,
size, and shapes distributions. With the strong fluctuation approach, derived cffective
permittivities will include scattering effects. The orientation distribution has a preferential
alignment direction rendering the medium effectively anisotropic. The size distribution is
described in terms of numiber density or fractional volume as a function of normalized
volumetric size. The shape distribution affects electromagnetic properties of the mixture
in a nonlinear manner. To depict various shapes of scatterers in a species, scatterers with
a similar shape arc classified into a group treated asa subspecies.

The theory is used to obtain anisotropic effective permittivities of multiphase con-
gelation sea ice with a columnar structure, In this formulation, physical and structural
characteristics of the medium can be modeled more realistically. Moreover, the model al-
lows physical and morphological variations in medium properties that are interrelated and
subordinated to physical processes such as constituent phase redistribution and structural
metamorphism under thermal effects. Calculated results arc compared with experimental

data at 4.8 GHz for multiphase saline ice undergoing warming and cooling cycles.

2. MODEL FOR EFFECTIVE PERMITTIVITIES

In this section, the strong permittivity fluctuation approach is used to formulate and
derive effective permit t ivities of an anisotropic medium cent ainin g scatterers with different
phases, permittivities, and distributed structural properties. The effective pcrmittivities
arc obt ained by combining the method for an inhomogeneous ani sot ropic medium [Nghiem

ctal., 1993) with the method for a multi-species mixture [Nghiem et al., 1995b).




2.1. Formulation for a Distributed Heterogeneous Medium

The effective permittivity tensor of the medium consists of a quasi-static part and a
scattering part corresponding to the first and second terms, respectively, in the following

expression [ T'sang and Kong, 1981a]
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- — = — 1-1
€off = €91 €0 [I — Qeff <S>] “Leps (1)

where 7 is the unit dyad.In (I), €, is the auxiliary permit, ttivity tensor, S is the dyadic
coefficient of the Dirac delta part in the dyadic Green’s function of an anisotropic medium,
and Z_Cff is the, cffective dyadic scatterer. Before deriving these quantities, wc need to
describe the medium and define characterizing paramcters.

Figure 1 illustrates the modeling of a multiphase medium with multiple species and
subspecies of scatterers such as sea, ice. First, define a species as a set of scatterers with tile
same permittivity. In (1), ?g and § arc solved iteratively from a set of nonlinear coupled
equations; these quantities depend on ratios of correlation lengths, i.e., scatterer shapes
[Nghiem ¢t al., 1995 b]. Thus, it is necessary to classify scattcrers in each species into
groups considered as subspecies; each contains scatterers of similar shape. In this context,
a subspecies is a set of scatterers with the same permittivity and the same shape. The
shapes have a general ellipsoidal form with arbitrary axial ratios including spheroids and
spheres as special cases. While ?g depends only on correlation length ratios, the scattering
part in (1) dots depend on the scatterer size. Size validations of scatterers in a species are
accounted for with an integration over the scatterer size distribution in the calculation of
the scattering part.

Let € be the permittivity of a background medium hosting a total number of N



scattering subspecies. Permittivity €is is for subspecies ¢ occupying a fractional volume fis

in the mixture, The total fractional volume of all scatterers is } ' fis = 1[5 where o

4i=1
is the fractional volumnc of the background. Note that a single subscript ¢ is used to denote
subspecies in all species (this simplifies the arrangement of subspecies and species into a
single array) and that € has the same value for scatterers in the same species.

The ecffective dyadic scatterer, chf, of the heterogeneous anisotropic medium is given

by the following expression [ Tsang and Kong, 1991a; Nghiem et al., 1993, 19955
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which is valid under the condition '[Z:eff (E)]jm| << 1. Normalized volumetric size v is
defined as the volume of a scatterer in a species under consideration divide by the volume
of the smallest scatterer of the same permittivity regardless of shape. By this definition,
the minimum value of v is 1. The integration over dv accounts for the size distribution
in the size range v;(species) of scatterers in a species. The probability density function
of orientation Pi («, 3, ) is described in terms of Eulerian orientation angles «, /3, and
v, which relate the local coordinates (z’,y’, 2’) to the global system (z,y, z) as shown in
Figure 2. The tensor Eg is the anisotropic dyadic Green’s function [Nghiem et al., 1990).
For the ellipsoidal form of scatterers used in this paper, the Fourier transform ®i¢ of the

normalized local correlation function is

N Cigr iyl
Qie(k) = 721 ¥ k22 2T,+szgz + k1202 ,)? (3)

in the local coordinates of the scatterer. The local correlation lengthsis’,%iysand iz’

depend on the scatterer size and shape. The local variance I‘f.?}k,m of scatterer fluctuations




of subspecics i is defined as [Nghiem et al., 1995b]
TS e () = fis () s (&5 — Eoje) (itm = Evim) (4)

Note that the fractional volume fis(v) of subspecies ¢ is a function of the normalized

volumetric size v and f;;(v) carries information regarding the size distribution.

2.2. Ezpressions for Effective Permittivities

The condition of sccular elimination <§(F)> = () is imposed to derive the auxiliary
uniaxial permittivity tensor €, =diag(eg,, €gp, €2 ). For scatterers preferentially aligned
in the vertical dircction and random in azimuth, the orientation of ellipsoidal scatterers
is characterized with relative azimuthal angle « between the local and global coordinates.

Thus (E(T» is simply

27
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where the ucm-zero elements of 7' arc Ty1=T22==cos a,Tio==—T9 = sin «, and 2'33 = 1.

Carrying out the integration over azimuthal angle « yields

Nb
;fis ((ix+ &iy')= O (6a)
N
Zfisgiz’ == 0 (Gb)
i=1

where the summation is over all constituents in the medium including the background

whose fractional volume notation fss=fsisused here for convenience. In (6), £'s are

related to S's and arc expressed in the local coordinates as
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Liyry'(€) = Liyr(€) = €0+Szy (6~—fgp) (7b)
Ciarar(€) = Eiar(e) = — = P (7c)

€0+ Sizi(€— €g,)
wicrezis 1 ,2,..., AT for the scatterer subspecies or ¢ is replaced by b for the background.
In (7), €takes on the valuc of €5 in a scatterer of subspecies i or ey in the background
medium.
The dyadic coefficient ?,- for the ellipsoidal scat t crer is deri ved from t he vanishing
condition of the frequency independent terms in the cffective scatterer tensor [ Tsang and
Kong, 1981 a]. By cancelling the frequency independent terms [in (14)-(16) below], the

results for subspecics i arc
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where the integrations over « arc carried out numerically. The quantitiesa;, viz, and 7viy

arc

€
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With the above results for S;, the average dyadic coefficient <§> in (1) is determined by

: fzs ELE— —
(S) = / daT -| 0 Sy 0 |-T
0 0 Sig’
N,b
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= Y 0 Six'+5iy/ 0 = Os. O (lo)
i=1
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for Eb = Zf\; 1 fiSi /(1 — f5 ). Thenegsand S'S are solved iteratively from the above
equations.
To complete the derivation of the effective permit tivity tensor, the effective scatterer

tensor needs to be obtained. Due to the azimuthal symmetry, the effective scatterer tensor

§ry takes on the uniaxial form

esyp O 0

bl

gr = | 0 Legrp O (11)

0 0 éeffz

which is defined by (2) from which the following results
Eeffp = —2“/610 [bicar (Lizt + Sizr) A iy (Tiy' 4 Siy?)] (12a)
N
ﬁeffz = Z/dv 61{2 (Ilz’ +- Siz ) (12b)
The variance di¢’s in (12) are related to fractional volumes and local scatterers by
bigir = fisfo (&ijr - &o) (i €vj) (13)

The quantities fiz’, liy', and I;,» in (12) are derived by substituting elements of the

anisotropic dyadic Green’s function [Nghiem et al., 1990) and the Fourier transform (3)
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of the normalized correlation function in (2). The complex variable integrations involve
only elementary functions. The results that follow contain square root and inverse tangent
functions of complex arguments. For the squarc root (y/w) of a complex number w, there
are two Ricinann sheets and the value on the principal Riemann sheet is chosen with the
branch cut on tile negative real axis of the complex plane such that, — 7 < arg w <« for
thearguinent Of w. The inverse tangent function of a complex number w is determined by
tan™! w = 1/(2i)In[(1 + tw)/(1~ 1w)] which has aninfinitc number of Riemann sheets and
the value of the: natural logarithm is taken on the principal Riemann sheet with the branch
cut also along the negative real axis such that — 7 < arg[(1+7w)/(1 - tw)] <. Figure 3
shows a schemnatic visualization of these Riemann sheets. The sheets should collapse onto
the complex plane and their limits extend to the entire complex plane including zero for
the square root and excluding zero for the logarithm. With these single-value complex
functions, the results for I’s of subspecies : arc:

(a) For z’ clement

27
Iy = —/ da _‘6_07 (Zs + 14) (14a)
0 ngzl
T :__()1672'2\/0/(:7? [\/:Z + }99 'i'(_ (_7[ . tan“l }/_E_Zf)] (14b)
’ 2“? Ue 196\/:98 2 \/Bc
2,2 . 1,2
Id:aﬂzz Ltaivg + 00((11442)“(1);!_%%2,) (.75 ~tan™! 1 > (14¢)
2a | 9, 9o/ 2 Vi,
ugzz, = kgpffz, , kgp = wlpoegp, ¢ :af'yfvgz, (14d)
acyf + ¢
b= —"——, J,=b-1, J.=0b+4¢( (14e)

aj;

(b) For 2’ clement

2 k2
J = / da =2 (E?y,'yfy sina 1, + 027 cos*a 1) (15a)
0 ™
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I =a [(If LTI+ % (13 + 14— %)] (15b)

I, =10 -1%~ 1§ (15¢)

7o _ catvaa? [_\f:Z R (” an=! fc)] (15d)

1 2a?9,

1 1 Ly - 1 )]
¢ |1l — —— | = --ta 15¢
I = 5, [1 7. (2 " e (15¢)

2
e QT 21 1 T _ —1_1.-)] 15f
13*2a?190[ b 190‘(2 RV (151)
I} =TI =1), Ij=Tiac=1), I3=Iie=1) (15g)

(¢) Fory' clement
2n kz .
Liyr = / da _;rg (E?x,'y?x cos?a I, + Z?y,'yfy sin’a I,) (16)
0

Substituting €, <§>,and Eeﬁ in (1) finally yiclds the uniaxial effective permittivity

tensor €qrp = diag(€eff o, €cff ps €eff 2 ) Whose lateral and vertical elements are, respectively
ff ff p Ceff ff

ecstp = €gp + €0€essp /(1 — Splesfp) (17a)

Eeffz = €gz -+ fOé.esz/(l - Szfejfz) (17b)

Depending on medium structures and characteristics, size and shape distributions
can be measured with digitized section images [ Vallese and Kong, 1981; Perovich and
Richter-Menge, 1994]. Local correlation lengths corresponding to a scatterer can also be
estimated by setting the correlation volume to be equal to the volume of the scatterer with
the same axial ratios [ Yueh et al., 1990]. For an cllipsoid with semi-axes a, b, and c, the

relations with correlation lengths are

Eim/&-y:eiz: = cba/G, giy’/gi:v’ == b/(Z, E,-z:/ﬁix' =z (I/C (18)
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The expressions in (17) indicate that the effective permittivity tensor ?eff is aniso-
tropic with an optic axis in the vertical direction due to the preference in the orientation
distribution, The above derivation has been carried out for ellipsoidal scatterers with

arbitrary axial ratios, which can be reduced to the case of spheroidal or spherical scatterers.

3. APPLICATION TO SFA ICE

The results derived in the previous sections are now specifically applied to model sea
ice including thermodynamic phase distribution and structural met amorphism.Seaice is a
multiphase mixture as illustrated in Figure 1. The background is ice grown in the columnar
form as observed in congelation ice. In many cases, crystallographic c-axes in sea ice arc
parallel to the horizontal plane. When there is no directional stress, such as caused by a sea
current, exerted during the growth process, the c-axes are randomly oriented in azimuthal
directions. Ice platelets in sea ice sandwich saline water from the sca in ellipsoidal pockets
called brine inclusions. In addition, there are air bubbles embedded in the ice. When
the temperature changes, the solid, liquid, and gaseous phases redistribute, ice structure
metamorphoses, and characteristics of constituents in sea ice such as permittivity also vary.
Further details of sea ice characteristics can be found in several references [e.g., Weeks and

Ackley, 1982; Nghiem et al. 19953].

9.1. Sze Distribution

Due to the high permittivity of the saline water at microwave frequencies, brine

inclusions have a strong effect on the electromagnetic properties of sea ice. The size
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distribution of the inclusions has been reportedto follow the power law [Perovich and
Gow, 1991]. Consider a power-law distribution for number density n of scatterers with
size v described by

n=npy % (19)

where p is the power-law index and 7o is the number density of brine inclusions of the
smallest size. The normalized volumetric size has becen defined in subsection 2.1 as the

ratio of volume v, of an inclusion over volume vso of the smallest, one. By definition,

Ps s

. (20)

Vs0 nVs0

v

il

in which f, (let's temporarily drop subscript : for the subspecies) is the fractional volume
of inclusions with volume vs. From (20), the size distiibution can also be represented by
the fractional volume as

fs(v) = novsov! "% = foov! TP (21)

for the fractional volume fso0 of inclusions having the sinallest size. The size distribution is
specified when fso and p are determined. This can be done if the total fractional volume
and t hc minimum, average, and maximum sizes of t he inclusions are measured.

First, a solution for power-law index p is considered, Average normalized volumetric
size vq IS obtained by measuring the size of every inclusion and then taking the average.

Mathematically, this process is described by

1 fsm 1 fsM (fs )1/(1*21))
- - dfs §) = ———— df s = (22)
“a ° fsM N fsow/f‘,o f v(f ) fsM - st fsé"‘ f f30

The integration ranges from the fractional volume fso of the smallest inclusions to fsm of

the largest. Another method of measuring the average normalized volumetric size is to take
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the ratio of total fractional volume f,r to the total number density ny of the inclusions

and normalize it to the smallest volume vs o; i.c.,
= = (23a)
The total number density 77 is calculated by an integration over the size distribution

UM UM .
ny = / dvn(v) = / dvnov™ P (23b)
1 1

in which vm = v p /Uso is the normalized volumetric size of the largest inclusions. Both

(22) and (23) give the same result for average volumetric size v,

1--2p v2{t7P) - 1
B i S £ St
a T2(1-p) {7 — 1 TP g (24)

This is rearranged to solve iteratively for the power-law index p from

1 Vg — QUM 1 ) 1--2p
= 1 . th T e
P=5m VM n ( Vg — ¢ > + 2 W e 2(1 - p) (25)

The following conditions arc used to check the conver gence of the solution

2(1-p) _
M 1
1/(1-2p)
_f_ Ya—9
VA = (Ua — qu) (26b)

Note that the right hand side of (24) has to be positive since v,is positive. Furthermore,

vM > 1 results in

2(1-p) _
UM 1 -2 p >
= — > 0 => — 27
o2 2(1 —p) (27)

which imposes the condition p € (0.5, 1). Thus, the power-law index p is determined if va
and YM are known. For given v, and vas, if the solution for pis not possible, a different

description of the size distribution should be considered.
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Now, fractional volume fso of the smallest inclusions needs to be derived to complete
the determination of the size distribution. Total fractional volume f,7 of the inclusions is

calculated by integrating the fractional volume distribution over t he entire size range

Y v 1
fsr = ~/1 dv fs(v) = fso—g(“l"::))“ ) for p # 1 (28)

When the total fractional volume is known from measured data, f,q is solved by using (28)
and the solution for the power-law index p.

The size distribution changes with temperature. When the temperature varies, vol-
umes of individual brine inclusions do also. Assume that the volumes of the inclusions

change at the same rate; i.e., for two different temperatures Toand 7T,

2.00) _ v (T)
v,0(To)  vso(T)

(29)

Also assume that no new inclusion is created nor existing ones removed at different tem-

peratures; i.e., the density number of the inclusions is conserved. This condition requires

fs(To) _ f () and fs.O_(_TO) ____&O(T) (30)

vs(To) ~ v, (T) v50(T0)~  ws0(T)

Let the size distribution at temperature To conform to a power law with index »(To ) so

that
fs(TO) B st(TO) vl—2p(T0) (31)
Substituting (31) in (30) renders

£s(T) _ fso(To)  1-2p(70) (32)

vs(T) vs(T0)

From (29), (30), and (32), it is shown that

fs(T) = f,0(T) 1= 2p(T0) (33)
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Equation (33) indicates that the power-law index does not change as the temperature varies
when the above assumptions arc reasonable. Under tile above conditions, volumetric sizes
are also preserved at different temperatures so that v.(T) = va (7o) and vpr (T') = var (T.).
If ice structural data are not available at all temperatures under consideration, the index
obtained at a temperature may be used at a different, temperature when there is no severe
brine loss nor ice deformation. otherwise, thin section images are necessary to determine

the size distribution. For air bubbles, the size distribution is obtained in the same manner.

9.2. Shape Distribution

Shapes of brine inclusions have been observed as substantially ellipsoidal [e.g., Gow et
al.,1987). From thin sections of saline ice grown at the U.S. Army Cold Regions Research
and Engineering Laboratory [ Gow etal., 1987, it is seen that only inclusions of small
sizes have a more rounded spheroidal form. Following these observations, a slowl y varying

logarithmic function is used to describe the shape distribution such that

inwv

iny
ep(v) = (esmr %’")ﬂﬂhfr €bm (34b)

where the axial ratios eq = a/c and €y = b/c. Subscript M and m are for maximum
and minimum values, respectively. This shape distribution implies that inclusions are
substantially ellipsoidal for large and medium size and more rounded for small sizes.
When the temperature increases during a warming cycle, the shapes of the inclusions
become less ellipsoidal or more rounded as seen in thin sections of saline ice prepared by

Gow et al. [1987). This thermal effect on the sea ice structure is modeled with a reshaping
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factor operating on axial ratios eap and €snpr. Suppose that axial ratio esm (7o) at the low
temperature To becomes epps (T ) at the highest temperature 1 of the thermal cycle. The

axial ratio at temperature 7' between Zoand 7}, then assumes the form

eon (T) = eanr(Te) = (T § oo = (D) (35)

where I’ is the reshaping index and all temperatures are in degrees Celsius below the
freezing point. When the thermal cycle has alarge temperature range, (35a) can be

approximated as
esm (T) = [esna (To) - eoma (Th)] {1 — exp[P(T - T)]} -+ com(Th) (35b)

such that the value of espm (T) is well preserved near temperature Jo.Similar formulas
apply to e,M. This thermal process describes a structural metamorphism which makes
ellipsoidal shapes of the inclusions transform into a more rounded form with an increasing
temperature. For air bubbles, observed shapes are rather rounded in the form of spheroids
or spheres [Perovich and Gow, 1991; Gow et al. 1987). Therefore, shapes of air bubbles
do not change as much as those of brine inclusions and are assumed to be unaffected by

thermal variations.
3.3. Correlation Lengths

When scatterer axial lengths are specified, the corresponding correlation lengths in
the local coordinates can be calculated from (18). Furthermore, correlation lengths also
vary as a function of temperature since sizes and shapes of the inclusions change with

temperature. If geometrical measurements of the scatterers are made at temperature To,
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correlation lengths at a different temperature, 2’, may be estimated under the assumptions
in subsection 3.1. From (30), the normalized volumetric size at temperature T' can be

written as

on(T) = L0 4 (2p) (36)

The size distributions at different temperatures in (31) and (33) and total fractional volume

fsT given by (28) lead to the relation

_&(T_)_ 20(T) _ for(T)
IO, (37)

(To ( o)~ fer(To)

Relation (36)and the ratios in (37) together with the definition of normalized volumetric

size (20) give

st( )
vs(T so( Tt 38
( ) fs (T ) v 0( 0) ( )
Volume v,(T) and vs0(To ) of an ellipsoidal inclusion are calculated from the sizes as

47 3/

vs(T) = ?ea(T)eb(T)c (1) (39a)
4

vs0(To) = ———cam(7 Yewm (10)e, (1) (39b)

where m denotes the minimum. Substituting (39) in (38) and using (18) render the local

correlation lengths corresponding to the inclusion

v fs0(T) eam (To)esm (To) 5
[6f:0(T0)  ea(T)es(T)

KT:(T) = Cm(TO) (403)

by (T) = es(T)e(T) , £:/(T) = ea(T)e(T) (40Db)

These equations determine the correlation lengths at temperature T° from measurements
at temperature To. In (40a), ratio fs7(T")/fs7(To) can be used instead of fso(T)/fso(To)

according to (37). Correlation lengths for air bubbles can be obtained in the same manner.
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3.4. Constituent Characteristics

The ordinary ice polymorph In with a hexagonal symmetry (as distinguished from
I with a cubic symmetry) is predominant in natural geophysical conditions [Hobbs, 1974;
Glen, 1974; Weeks and Ackley, 1982; Petrenko, 199,?]. The principal hexagonal axis is
the crystallographic c-axis. Each polycrystal in congelation columnar sea ice consists
of ice platelets perpendicular to the c-axes. During the growth process, ice entraps sea
water in ellipsoidal pockets, referred to as brine inclusions, between the ice platelets. In
columnar ice, c-axes become parallel to within a few degrees of the horizontal plane [ Weeks
and Ackley, 1982] and brine inclusions are therefore oriented preferentially in the vertical
direct ion.

Sea icc is naturally a multiphase mixture consisting of solid ice, liquid brine, and
gaseous inclusions. While the real part of ice permittivity is not very sensitive to tempera-
ture, the imaginary part is dispersive and varies significantly with temperature. Empirical
formulas to calculate ice permittivity as a function of temperature at microwave frequen-
cies are available [ Vant etal., 1982; Tiurietal., 1984; Matzler and Wegmailler, 1987). The
magnitudes of complex permittivity of brine in sea ice are large compared to those of ice,
and both real and imaginary parts decrease several times as frequency increases. Empirical
formulas to compute complex dielectric constants of brine were reported by Stogryn and
Desargant [1985] in terms of temperature and microwave frequency.

Constituent phases in sea ice are interrelated thermodynamically, When the temper-
ature of sea ice varies, the fractional volume of brine inclusions and air bubbles changes

accordingly. On the basis of phase equilibrium, Cox and Weeks [1989] provided equations
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for determining fractional volumes of brine inclusions and air bubbles n sea ice in the
temperature range of —2° C to — 30° C. The required input parameters are bulk ice den-
sity, salinity, and temperature. While the volume of solid salt is usually minute and has
a ncgligible direct  contribution to effective permittivities,the process of salt expulsion is
important due to the consequential redistribution of the phases of brine and air inclusions.
The salt Na,S0, 10H.,0 crystallizes at —8.2° C; however, the phase change is much sharper
at —21. 1°C. This is the eutectic temperature of Na(Cl.2H,O corresponding to the pre-
cipitation of the salt (sodium chloride dihydride). In sea water brine, an initial formation
of the salt appears at —22.9° C [ Weeks and Ackley, 1982]. This phase transition causes a
kink in the phase curves and impacts the effective perinittivitics of sea ice as a function of

temperature.

4. DATA COMPARISON AND DISCUSSION

In this section, results calculated from the model are compared with experimental
data. Complex permittivities of sea ice grown from saline water at the U.S. Army Cold
Regions and Research Engineering Laboratory (CRREL) were determined [Arcone et al.,
1986]. The ice slab was composed of columnar ice crystals exhibiting the ice plate/brine
layer substructure that characterizes congelation sea ice in the Arctic [Arcone et al., 1986].
The permittivities were obtained from transmission measurements for waves normally in-
cident on the ice slab; therefore, only data for €eff , corresponding to an ordinary wave
were reported; the extraordinary component was not available for the study in this sec-

tion. Uncertainties due to data variations and theoretical assuinptions are also assessed
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with sensitivity analyses.

4. 1. Ice Characterization

The sca ice slab was taken from a saline ice sheet (Sheet 85-3 [Arcone et al., I 986])
to a laboratory environment where the temperature was controllable. Measurements were
made at temperature intervals during progressive warming of the ice slab from -32° C
to —2° C ata C-band frequency of 4.8 GHz. The salinity was 5.4 %00 before testing ancl
reduced to 4.2 %00 after testing clue to brine loss during the warming process. Only the
final bulk ice density of 0.866 Mg/1113 was reported. For a given set of temperature, salinity,
ice densit y, and wave frequency, fractional volumes aun d permit t ivi t ics of the constituents
in sea ice are calculated from the empirical formulas as discussed in section 6.4. Typically
in these cases, total fractional volumes of brine inclusions ant{ air bubbles are on the order
of 10%. Real parts of the relative permittivities of the ice background are about 3.15
and imaginary parts are on the order of 0.001. Both the real and imaginary parts of
brine permittivities arc about one order of magnitude nigher than the real parts of the ice
background relative permittivities.

For ice structure, dendritic planes normal to c-axes show a marginal tilt of only 2°-4°
and can be modeled approximately as vertical. Photographs of horizontal thin sections
taken from the ice slab before and after the t hermal m odificat ion were presented by Gow
et al. [1981. It is observed from the photographs that c-axes are randomly orient ed in
azimuthal directions, Initially at — 30° C, minimum, average, and maximum linear sizes are
estimated as 0.05 mm, 0.10 mm, and 0.30 mm, respectively. To calculate the power-law in-

dex for brine inclusions, normalized volumetric sizes corresponding to cubics of the ratios of
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the above linear sizes are used; this gives the index of 0.8945 for the size distribution, The
initial axial ratio €¢ym for brine inclusions of smallest size is 1 representing the spheroidal
shape. The maximum axial ratio esar is roughly estimated to be 8 to describe the sub-
stantially ellipsoidal shape of large inclusions. Vertical section images were also available
but not large enough to sce substructures of the inhomogenecitics; therefore, vertical axial
sizes of these scatterers have to be chosen and sensitivity analyses will be done to study
related uncertainties. The choice for initial minimum and maximum major axial ratios is
eam = 2 and €qrp = 10 to cover the range of variatious in brine inclusion sizes. After the
warming process, axial ratios for brine inclusions are taken to be ¢om =1.5and eap = 3
to account for the change from substantially ellipsoidal shapes into rounded forms. The
reshaping index can be estimated from (35) when thin section images are available for
some intermediate stages in the thermal modification process. Here, a reshaping index of
0.3 is assumed for the validity condition of (35 b).

For air bubbles, the effect on effective permittivities is not as strong as that due to
brine inclusions. Air bubbles are much more rounded than brine inclusions. The shape
change in air bubbles is therefore not large and the bubbles are considered as spheroids
having circular cross sections as observed in the horizontal thin sections, Uniform axial
ratios of air bubbles are assumed to be e; = 1 and e, = 2, taken after the values observed by
Perovich and Gow [1991]. Initial linear sizes of air bubbles are taken to be the same as those
of brine inclusions and thus the power-law index is also 0.8945. While the bubble shape
is considered unchanged thermally, bubble size variations as a function of temperature are

taken into account.
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4.2, Data Comparisons

In this subsection, the experimental observations are explained with the theoretical
model. The model is first simplified. Then, the complexity is added to arrive at the better
description of the medium with the full model. This st[p-by-step method is used to identify
physical mechanisms responsible for the behavior of effective permittivity under changing
thermal conditions,

First, brine loss during the warming process is ignored and the shape of brine inclu-
sions is considered as uniform with average axial ratios e, == 3 ande, = 5. These ratios
are kept constant with respect to temperature. However, size distributions for both brine
inclusions and air bubbles are included. Results from the calculation for the imaginary
part of relative effective permittivity €effpo/€0 (€0 = 8.8542 x 10712F . m~! is the permit-
tivity of free space) are plotted with the dash curve in Figure 4 together with measured
data obtained from the experiment. In genera], the theoretical curve shows an increasing
trend as temperature increases. This is caused by the increase of brine fractional volume
at higher temperat ures. The kink observed at --23° C (calculations are made at intervals of
1° C started from —30° C) corresponds to the phase change associated with the formation
of sodium chloride dihydride and the solidification of brine at colder temperatures. The
steep slope of the theoretical curve in the higher temperature range is a result of the fast
increase in the brine fractional volume. Compared wit h experiment al data, the theoretical
values are too low at low temperatures and too high at high temperatures.

The shape distribution of brine inclusions and its variations with temperature are

now considered. Brine inclusions are grouped into 20 subspecies; which are sufficient for
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a good convergence in the results as compared to test talc.ulatiolls with 100 subspecies.
The calculated results arc shown with the dash-dot curve in Figure 4. Compared with
the old theoretical results, the new curve is higher at low temperatures and lower at high
temperatures. In thelow temperature range, higher values are caused by the existence of
more substantially ellipsoidal brine inclusions which have stronger depolarization effects
and larger cross sections. At higher temperatures, the effect of inclusion rounding are
more prominent in the competition with the increasing effect of higher fractional volumes
to render the results to lower values. Regarding the experimental data, the comparison
is much better except at temperatures higher than - -8° C the calculated results are still
larger than the measured values, If the brine loss represented by the decrease in salinity
from 5.4 O/oo to 4.2 Oloo is incorporated in the model by a linear decrease in salinity from
—8° C to —4° C, the theoretical curve shown in Figure 5a explains all the trends observed
in the experimental data for the imaginary part of the relative effective permittivity. The
real part is presented in Figure 5b which indicates that the calculated values are within
10% lower than the measured data.

For the cooling cycle, theoretical results and experimental data are compared in
Figure 6a for the imaginary part of the relative effective permittivity. In this case, scatterer
shapes and their variations are not specified by documented experimental data. To account
for this situation, theoretical results are obtained with the upper bound for a completely
reversible process of the shape variations and the lower bound for an irreversible process
where the shapes ret ain their form once they becom e more rounded after the warming
cycle. Calculated average values are shown with open circles and measured data with

black circles in Figure 6a. The comparison indicates that theoretical and experimental
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results are well overlapped within their range of variations. The real part of the relative
effective permittivity during the cooling cycle is shown in Figure 6b where black circles
arc experimental data. Effects of shape variations are small for the real part and the
cent inuous curve is t he average results, which compare very well with the measurements.

The analysis in this subsection is based as much as possible on available ice character-
izat ion data. The lack of characterization information has necessit ated some assumptions.
The uncertainties associated with the assumptions can be estimated with sensitivity anal-

yses in the next subsection.

4.9. Sensitivity Analyses

As seen from the model, shape effects on imaginary parts of effective permittivities
arc import ant. In Figure 7a, dash-dot curves are computed with axial ratios varied by
+20% from those used in the last subsection for data comparisons. The continuous curve
and the data are the same as in Figure 5a plotted here for reference. The results show
that the effect of ellipsoidal shapes is most important in the middle range of temperatures.
The insensitivity of shapes at —2° C is due to the rounded form of the inclusions and at
low temperatures due to low fractional volume of brine. The corresponding variations in
the real part of the relative effective permit tivit y are presented in Figure 7b. The results
show the insensitivity of the real part to the changes in axial ratios. In general, deviations
caused by the above uncertainty in scatterer shapes are within the spread of measured
data.

Another assumption is that the bulk ice density of 0.866 Mg/m3 has been used in all

of the previous theoretical calculations. This value should not be constant as the salinity




26
changes due to the brine loss. The inaccuracy in density may lead to an uncertainty in
the phase distribution of the constituents in sea ice. The sensitivity analysis is carried out
by varying the density by 25%. This is to keep the variations within the density value
of gas-free seca ice. The results in Figure 8a indicates that the imaginary part is more
sensitive to the density at higher temperatures, In this temperature range, a small change
in temperature results in a large variation in the fractional volume of brine inclusions
[Coz and Weeks, 1985). The resulting variations arc, however, within the measurement
fluctuations. With the results in Figure 8b, a comparison to those in Figure 7b suggests
that the volumetric composition in sea ice has a stronger effect on the real part.

For the size distribution, the sensitivity is studied, for example, by varying the max-
mum normalized volumetric size by 4 10%. The variations affect the power-law index and
thus size distributions of brine inclusions and air bubbles. Calculated results indicate a
weak sensitivity in this case. This provides some justification for the use of the result
in subsection 3.1 to approximate the power-law index when the ice slab has some brine
loss. The sensitivity analyses in this subsection indicate that the assumptions are rather

reasonable or, at least, do not lead to too large deviations,

5. SUMMARY

This paper presents an electrothermody namic model of a multiphase anisotropic
medium with multiple species and subspecies characterized by changing phase, orienta-
tion, size, and shape distributions under thermal effects. Effective permittivities of the

medium are derived with the strong permittivity fluctuation approach. The heterogeneous
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medium is effectively anisoh-epic due to a preferential alignment in the orientation distri-
bution of ellipsoidal scatterers. The size distribution of scatterers in a species is described
in terms of the number density or the fractional voluine as a function of normalized volu-
metric sizes. The shape distribution is considered by grouping scatterers in a species into
many subspecies based on the similarity in scatterer shapes.

The formulation is applied to model congelation sea ice consisting of solid ice, liquid
brine, and gaseous inclusions. The model accounts for the thermmodynamic redistribution
of the constituent phases and the metamorphism of the heterogeneous ice structure. The-
oretical and experimental results of effective permittivities are compared well for saline ice
at 4.8 GHz undergoing warming and cooling cycles. Observed trends in the measured data
arc explained with the physical model. Sensitivities of sea ice characterization parameters
arc analyzed to estimate uncertainties due to inaccuracies in characterization data and
model assumptions. The analyses show that shapes are important to the imaginary parts
of effective permittivities and that density variations also affect the real parts.

The model in this paper includes complex thermodynamic processes including struc-
tural changes in sea ice subject to thermal effects. However, the model needs to be further
developed to account for a more general case where scatterer orientations have preferen-
tial alignments in both vertical and horizontal directions. In this case, the heterogeneous
medium becomes effectively biaxial such as columnar sea ice with c-axes directed along a

persistent underlying sea current.
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Figure Captions

Modeling of a multiphase mixture containiiig multiple species and subspecies of

scatterers such as sea ice.

Eulerian rotation angles a, 3, and 7 between local coordinates (x, y’,z’) and

global coordinates (z,y,2).

Figure 3. Schematic illustration of Riemann sheets with unshaded surfaces representing

Figure 4.

Figure 5.

principal sheets. For the cases of (a) square root /w: the two sheets are
connected to each other at the branch cut along the ncgative real axis, —7 <
arg w <w in the principal sheet, and the black ellipse at the center indicates
that zero belongs to both sheets and (b) inverse tangent tanlw =1/(2¢)In[(1 +
iw)/(1-tw)]: one sheet is connect to the nezt one at tile branch cut along the
negative real axis, —m < arg{(1 + 7w)/(1 - 7w)] < in the principal sheet, and
the open ellipse at the center indicates that zero belongs to no sheet. The sheets
are drawn with some spatial separation to create the visual effect. The actual
sheets should collapse onto the complex plane and their limits extend to infinite

values.

Imaginary part of relative effective permittivity: Black circles are for exper-
imental data, dash curve for calculated results based on orientation and size
distribution and uniform scatterer shape; and dash- dot curves for calculated

results with shape distribution also included.

Relative effective permittivity in warming cycle: (a) Imaginary part and (b)
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Real part. Black circles are for experimental data and the continuous curve for

calculated results obtained from the complete model,

Figure 6. Relative effective perimittivity in cooling cycle: (a) Imaginary part and (b) Real
part. Black circles are for experimental data and open circles for calculated

results. For the real part, the continuous curve is for calculated results.

Figure 7. Effects of shape variations on (a) nnaginary part and (b) real part of relative
cffective permittivity: Black circles arc for experiment al data, the continuous
curve for calculated results, and dash-dot curves for upper and lower bounds

obtained by varying the axial ratios by +20%.

Figure 8. Effects of density variations on (a) imaginary part and (b) real part of relative
cffective permittivity: Black circles are for experimental data, the continuous
curve for calculated results, and dash-dot curves for upper and lower bounds

obtained by varying the bulk ice density by +5%.
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